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ABSTRACT 

In a generalized analysis, Case has shown that the electrostatic poten- 
tials obtained in Landau’s and van Kampen’s solutions to the collision- 
less Boltzmann equation are equivalent. The purpose of this Report is 
to furnish a simple explicit proof of the complete identity of Landau’s 
and van Kampen’s solutions; the analysis, however, follows a course 
different from that of Case. / 

-7 

1. INTRODUCTION 

Two distinct methods have been used in the self- 
consistent-field theory of plasma oscillations: the Laplace 
transform technique, first used by Landau (Ref. l), and 
the normal-mode expansion, first developed by van 
Kampen (Ref. 2). These authors solved the initial-value 
problem of the linearized Vlasov equation and obtained 
solutions which appear rather different in form. In 1959, 
an elegant discussion on the same problem was given 
by Case (Ref. 3), who generalized on van Kampen’s 
work, treating the case in which a discrete set of eigen- 
values may exist, in addition to the continuum set of 

eigenvalues considered by van Kampen. Also, Case 
showed equivalence of the electrostatic potentials ob- 
tained by the two methods. 

In the present analysis, which follows a course differ- 
ent from that of Case, an attempt is made to provide 
a simple explicit proof of the complete identity of 
the Landau and van Kampen solutions. Comparison 
of the two solutions, together with proof of the equiva- 
lence, may enable us to achieve a better understanding 
of the problem. 
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II. STATEMENT OF THE MATHEMATICAL PROBLEM 

If we denote the perturbed electron distribution func- 
tion by f (r, v, t )  and define its Fourier transform f (k, v, t )  
by 

The Landau solution of Eq. 4, in terms of the Laplace 
transform, has the form 

then the linearized Vlasov equation takes the form (5) 

where 

+ i k * v f  - i D ( v ) k  dvf(k ,v , t )  (2) s a f  
at  
- 

where 

48ne2 a f “  
D(v) = - -k*- 

mk3 a v  

Here, fO(u) is the electron Maxwellian distribution func- 
tion, e is the electron charge, and m is the electron mass. 
So far, we have assumed that the ions are uniformly 
distributed and form a neutralizing background; there- 
fore, the ions do not appear in the theory. The same 
assumption was used in Refs. 1 and 2 and is certainly 
justifiable because of the heavy ionic mass. 

and c denotes the Landau contour, which may be real- 
ized as a geometric representation of an analytic con- 
tinuation of the integral from the lower half to the upper 
half of the complex o plane. A detailed discussion of this 
analysis may be found in Ref. 1 or 4 and will therefore 
be omitted here. 

On the other hand, van Kampen’s solution, which we 
call & (k, u, t ) ,  takes the form To simplify the problem further, we may introduce a 

reduced distribution function f ( k ,  u, t), which is defined 
as 

f ( k ,  U ,  t) = / d 3 u  6 ( u  - $ ) f (k, v, t) 

Thus, Eq. 2 can be reduced to the form 

- +m 

- a f  + i k u f =  - i k z ( u )  (duf(k ,u , t )  
at 

J -m 

J -m 
where 

where 

- 
E ( * )  (a) = 1 Zk 27ri D(*) (a) 
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and 

Here, 6 (x) is the Dirac delta function, P denotes the 
principal value, and a = w / k  (the phase velocity). 

We now wish to prove that the inverse Laplace trans- 
form of f , (k ,u , , )  (the Landau solution) is identical to 
L(k,  u, t) (the van Kampen solution); i.e., 

where L denotes the path of integration which is parallel 
to the real axis and lies in the lower half of the complex 
0 plane, below a11 the singularities of f , (k ,  u, 0) .  

111. PROOF 

Making use of the definitions in Eqs. 9, 10, and 11, we may rewrite Eq. 8 
in the following form: 

n .Lm 

Evidently, 
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Multiplying Eq. 14 by e-ikut and subtracting this result 
from Eq. 13, one finds that 

f ; (k ,u, t )  = T2(k,u,0) e-ikut 

( e - i k u t  - e - i k a t )  

J -m 

In Eq. 15, the symbol P (which denotes the principal 
value in front of the integral) is dropped, since the nu- 
merator of that integral vanishes automatically at Q = u. 

has an analytic Again, since the function 

continuation without singularity in the lower half of the 
complex (Y plane, the integral 

&(-)(k ff, 0) 
&(-)(a) 

vanishes. Thus, Eq. 15 reduces to 

As far as van Kampen’s solution is concerned, this is the 
form that we prefer for the present proof. 

Now, let us return to the Landau solution and study 
its inverse Laplace transform; Le., 

+m-iy 
ei;Yt 

i (Z + ku) 
-m-iy 

It is well known that, in the case of a Maxwellian f”(u), 
the function E ( J k )  as defined by Eq. 7 is analytic for 
Im@) < 0; hence, we may deform the path of integration 
to the real axis: i.e., we take the limit y + O ( + ) .  Then 
Eq. 17 may be re-expressed as 

eik% +m-iy 

fi(k,u,t)  = Lim - 
Y-+O,+, 2 x 2  I d .  (Z+ u) 

- m - i y  

where, for convenience, we have introduced the quantity 
Z= ;Y/k and the notations 

and 

which are defined in a manner equivalent to that given 
by Eqs. 10 and 11. 

We shall next make use of the integral representation 

and substitute Eq. 19 into Eq. 18: 

fi(k,u,t) = Lim 
Y-’O(+) 

Since 

1 1 1 - - 1 
(Z+ u) ( Z +  a )  (a  - u) [-..- - 5x1 
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it is evident that one can readily perform the ;integra- Comparing Eq. 21 with Eq. 16, we conclude that, if 
tion and ohtain the following result: 

f i (k ,u , t )  = fi(k,u,O) e-ikut 

f l ( k ,  u, 0) = K(k, u, o), then 

f , ( k ,  u, t )  = fZ(k u, t )  
(e-ikut - e-ikot) f i  (+, (k ,  a, 0) 

(Q.E.D.) E ( + )  (4 
t21) 

+ 5 (u) 

IV. CONCLUDING REMARKS 

It is well known that, in the analyses by Landau and 
van Kampen, f" is assumed to be Maxwellian, and the 
dispersion equation does not have roots which should 
give rise to unstable oscillations. In order to include the 

more general cases in the present proof, one may start 
with Case's solution, rather than van Kampen's solution. 
Such extension is straightforward and involves no essen- 
tial difficulty. 
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